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Considerable attention has been paid, in recent years, to the use of networks in modeling complex real-world
systems. Among the many dynamical processes involving networks, propagation processes—in which the final
state can be obtained by studying the underlying network percolation properties—have raised formidable
interest. In this paper, we present a bond percolation model of multitype networks with an arbitrary joint degree
distribution that allows heterogeneity in the edge occupation probability. As previously demonstrated, the
multitype approach allows many nontrivial mixing patterns such as assortativity and clustering between nodes.
We derive a number of useful statistical properties of multitype networks as well as a general phase transition
criterion. We also demonstrate that a number of previous models based on probability generating functions are
special cases of the proposed formalism. We further show that the multitype approach, by naturally allowing
heterogeneity in the bond occupation probability, overcomes some of the correlation issues encountered by

previous models. We illustrate this point in the context of contact network epidemiology.
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I. INTRODUCTION

The end of the 20th century has witnessed increasing in-
terest in the scientific community for the use of complex
networks [ 1-4] as models for many real-world systems, from
both empirical and theoretical perspectives. From the empiri-
cal point of view, scientists have studied real-world networks
to highlight universal topological properties such as the
small-world effect [5], highly skewed degree distributions
[6-10], or assortative mixing [11]. On the theoretical side,
models have been developed to describe or explain topologi-
cal properties of networks [12—15] and to simulate their evo-
lution in time [16] and the dynamical processes taking place
on them [17-21].

The first models were rather simple: indistinguishable
nodes joined by randomly placed edges [22]. With increasing
information on real-world networks, more realistic—and
thus more complex—models have been proposed, taking into
account properties such as an arbitrary degree distribution
[13], clustering [23,24], degree correlation [25], weighted
edges [26,27], directed edges [13,28—-33], or mixing patterns
[11,34]. Except for a few cases (e.g., bipartite networks
[13]), many existing models still consider only one type of
node and therefore neglect any information characterizing
the differences among the constituents of the simulated sys-
tem. However, especially in social networks, these differ-
ences (e.g., sex, age, ethnic group) may have significant and
nontrivial effects on the structure (e.g., assortative mixing,
communities) and on the dynamical property(ies) of the net-
works themselves as well as on the dynamics of the phenom-
ena of interest (such as disease propagation) throughout the
networks [35,36].

In this paper, we present a bond percolation formalism of
multitype networks with an arbitrary joint degree distribution
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where nodes have explicit properties associated with the type
they belong to. On the one hand, the use of multitype net-
works allows one to reproduce mixing among nodes such as
assortative mixing [25] or clustering [23]. On the other hand,
the use of heterogeneous bond occupation probability allows
one to take into account correlations between the probability
of occupation of edges and the nature of the nodes they con-
nect. When applied to epidemic propagation, we argue that
this model adequately represents percolation (spreading) pro-
cesses where such correlations are observed (e.g., infectious
diseases whose probability of transmission is correlated with
intrinsic physiological and behavioral characteristics of indi-
viduals).

Our paper is organized as follows. In Sec. II, we introduce
the multitype networks and define several quantities of inter-
est. The formalism is developed in Sec. III, where we obtain
the occupied degree (and excess degree) distributions, the
small component sizes, the percolation threshold, and the
giant and (average) small component sizes. We also show
that our formalism corresponds to a generalization of exist-
ing approaches [19,25,37] reducing to known results in the
appropriate limits. This theoretical section is validated with a
number of numerical simulations and followed by an appli-
cation to epidemic dynamics in Sec. IV, where the previously
calculated quantities are interpreted in an epidemiological
context. We also take the opportunity to explain how the
proposed approach can overcome some of the correlation
issues that should appear in a realistic treatment of epidemic
propagation. Our conclusions and final remarks are then col-
lected in the last section.

II. MULTITYPE NETWORKS

We consider undirected multitype networks [25,38] de-
fined as undirected networks composed of N nodes, each of

©2009 The American Physical Society
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FIG. 1. (Color online) Schematic representation of an undirected
multitype network with M=4, N=33, w;=3/11, w,=1/3, w;
=2/11, and wy=7/33, where types 1, 2, 3, and 4 are shown as
squares, circles, triangles, and diamonds, respectively. Edges run-
ning between nodes are bidirectional and can thus be followed in
either direction.

which is labeled with one of M possible types. Type-i nodes
occupy a fraction w; of the network and the connections
between nodes are prescribed by the degree distribution
Pi(ky,ks,...,ky)=Pi(k) giving the joint probability for a
randomly chosen type-i node to be connected to k; type-1
nodes, k, type-2 nodes, ..., k) type-M nodes. Any mixing
patterns between nodes such as assortative mixing are incor-
porated in the model via P;(k). Our networks are considered
in the limit of large systems (N— ) and are totally random
in all respects other than the joint degree distribution Pi(k).1
Therefore, P;(k) and w; define a network ensemble over
which all quantities obtained with our formalism are aver-
aged. Figure 1 shows an example of an undirected multitype
network.

We now define z;; as the average number of edges leaving
a type-i node to type-j nodes, directly obtained from P,(k) as

gjj= E E iji(kh k) = 2 iji(k)~ (1)

k=0 ky=0 k=0
Even if every edge in our networks is undirected, the pres-
ence of different types of nodes adds an artificial direction to
edges. Indeed, one can follow a link from a type-i node to a
type-j node (denoted i— j) or in the opposite direction (j
—1i). Since the degree distribution P;(k) prescribes the num-
ber of edges leaving type-i nodes, a given edge joining a
type-i and a type-j node will be considered from two differ-
ent perspectives. Therefore, to guarantee the consistency of
the network ensemble, P;(k) and w; must respect the condi-
tion

wz=(wz)T, (2)

where

'We consider simple networks where no more than one edge can
exist between two nodes and where there is no edge connecting a
node to itself. The two possibilities have probabilities of the order
of O(N72) and O(N7"), respectively, in large random networks of
size N.
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when N — oo, This constraint relies on having as many edges
of type i—j as of type j—i.> Note that (2) implies €9)
nontrivial generally overdetermined equations. Thus, one
must use values for P;(k) and w; that explicitly satisfy (2).
The case M =2 is special in that w; can be uniquely deter-
mined from P;(k):
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with Tr(w)=1.

Having now defined networks where one can identify the
type of nodes, we are able to apply different probabilities of
occupation according to how edges are followed. Thus, in-
stead of having only one edge occupation probability 7, as in
other percolation models [19], we define the bond occupation
probability matrix

Tll T12 IS TIM
T Ty ... T

T=| R (3)
TMl TM2 TMM

where T;; is the occupation probability of the i—j edges.
Note that T does not need to be symmetric, and the probabil-
ity of occupation of i—j edges can vary between edges of
the same type (i.e., linking the same ordered pair ij) as long
as those values are independent identically distributed (i.i.d.)
random variables. The value of T; is then simply the mean of
their distribution [19] and is totally independent of T';, which
is the mean of a different and independent distribution.

In view of the possible asymmetry of the probability of
occupation, our approach is somewhat different from the tra-
ditional bond percolation treatment, which assumes a sym-
metric T. It would perhaps be more appropriate to refer to
our system as a semidirected bond percolation. This denomi-
nation stems from the following point of view: one formally
replaces every edge of the original undirected network by
two directed edges running in opposite directions and then
uses the corresponding probability of occupation for each
directed edge. This leads to a semidirected network whose
percolation properties are easier to analyze. Therefore, the
introduction of multitypes together with the tranmissibility
matrix allows us to cover systems ranging from classical
bond percolation (symmetric T) to spreading processes
(asymmetric symmetric T) where directionality (e.g., causal-
ity) is implicitly present. On this basis, we develop the mul-
titype formalism in the next section.

In practice, for realistic data, there will be as many edges of type
i—j as of type j—i and (2) will naturally be respected.
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III. FORMALISM

We now present a formalism that describes the heteroge-
neous bond percolation of multitype networks. It is based on
probability generating functions (PGFs) [39] and is a gener-
alization to multitype networks of the formalism developed
earlier by Newman [19].

A. Occupied degree distribution

The first quantity needed to describe the percolation prop-

erties is the occupied degree distribution P;(k), i.e., the dis-
tribution of the number of occupied edges leaving a ran-
domly chosen type-i node. Assuming independence in the
edges’ occupation states, the probability that a randomly cho-

sen degree-k node has k occupied edges is

M
Pi(klk) = H( )( T)h(1 = Tk, (4)

=1

The probability that a randomly chosen node has k occupied
edges is then simply

Pk) = EPwWPW EPMH()UNM—»Wh
l

k=k k=k =1
5
where the summation convention is defined in (1), here cov-

ering the ranges k,<kl o for 1 </<M. This probability is

generated by the PGF G,(x;T)=Gj(x,,...,x);T),
© M _
Gix;T) =2 Pl ] x
0 I=1
Mk B B
= E P[] > ( )(xz T)hi(1 =Tyt
=17 k=0 kl
=EPMJHHurUmW (6)
k=0 =1

We see that G,(1;T)=1 if P,(k) is properly normalized. We
can obtain the average occupied degree Z;;, i.e., the average
number of occupied edges leaving a type-i node to type-j
nodes, by using the differentiation property [13] of generat-
ing functions,

_aGT) o
%= T = Tijz k]Pl(k) = TijZij’ (7)
k=0

]

where z;; is the average degree defined by (1).

B. Occupied excess degree distribution

Another useful and accessible quantity in our formalism is

the occupied excess degree distribution Qij(%). The excess
degree is defined as the number of edges leaving a node that
have been reached by following a randomly chosen edge.
For undirected unitype networks (M =1), this quantity is sim-
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ply the node’s degree minus 1 (the edge that has already been
followed). More information is required for multitype net-
works; one needs to know the type of node at both ends of
the followed edge to correctly calculate the excess degree.
This quantity is proportional to k;P;(k) since high-degree
nodes are more likely to be reached from a randomly chosen
edge than low-degree nodes. Assuming independence in the
occupation state of edges, the occupied excess degree distri-
bution of a type-j node reached from an i —j edge is given
by

- - Mok - -
Qij(k) = iE (ki + 1)P;(k + all (igl)(sz)k’(l =Ty,
=1 1

i ek

(8)

where P(k+&8;) = P;(k,+6; Jky+ ;) and §;; is the delta
of Kronecker Deﬁmng F; (x T) as the generatmg function
associated with this dlstrlbutlon we have

Fij(x;T) = 2 Q,,(k)Hxl

k=0 =1

——kamHU+w—nﬂW%

jlk 0
which can also be obtained from G;(x;T) by differentiation:

1 .dG(x; T) )

x;T
( )= Zj[ ax;

where Z;; is the average occupied degree defined by (7).

C. Small-component size distribution

We now wish to calculate the size distribution of small
components in the network ensemble. A component is any
closed set (cluster) of nodes connected by occupied edges.
The adjective “small” is meant to qualify any intensive com-
ponent (i.e., one that does not scale with the network size).
Let us first define H;;(x;T) as the function generating the
size distribution of the component reached by following an
i—j edge. Small components are typically finite, except at
the phase transition where their average size diverges [40].
Thus, we expect the probability of finding closed loops in
finite components to vary as O(N~'), which is negligible in
the large-system-size limit (N—0). Small components are
therefore treelike in structure and H; (x T) can be decom-
posed into an additive set of contrlbutlons as graphically
shown in Fig. 2 for the case M =2. The size distribution of a
small cluster reached from an i—j edge arises from two
situations: either the edge reaches a node that has no outgo-
ing occupied edges (i.e., occupied excess degree=0), or it
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FIG. 2. (Color online) Ilustration of the consistency relation
(10) for M=2. The boxes represent the component reached by an
i— j edge and the circles stand for the type-j node first reached. The
colors of the edges refer to the type of the node from which one has
arrived and the color of the box or circle stands for the type of node
reached first.

T
T
T
T

reaches a node that has outgoing occupied edges (i.e., occu-
pied excess degree # 0) that lead to other clusters whose size
distribution is given by H(x;T) as well.?

Noting that the distribution of outgoing edges is given by
F;i(x;T) and using the power property [13] of generating
functions leads to the consistency relation

Hij(x;T) = x;F;;(H(x;T);T) (10)

where the right-hand side of the equation must be read as
Fi(H;(x:T),...,Hj(x:T);T). The solution to (10) is
found by seeking the stable fixed point of the mapping

HY(e;T) = x,F(H" V(x5 T);T)

as n— oo for initial conditions H( )(x T)=x;. Technically, the
existence of a stable fixed pomt is guaranteed by the pres-
ence of the x; factor in (10). Indeed, it implies that the coef-
ficients in front of variables whose powers sum to n (e.g.,
xll" o -x’,i},” with =¥ k;=n) are exact after precisely n+1 itera-
tions.

Let us next consider a randomly chosen type-i node. Each
of its leaving edges leads to a component whose size distri-
bution is generated by H,(x;T). Defining K;(x;T) as the
function generating the size distribution of the whole com-

ponent, we have
K(x;T) =x,G,(H;(x;T);T). (11)

Since type-i nodes occupy a fraction w; of the network, the
size distribution of the component reached from a randomly
chosen node is generated by

M M

K(x;T) = 2 wiK,(x;T) = 2 w,Gi(H (x;T);T). (12)
i=1 i=1

Similar equations to (10) and (11) have already been derived
in [25] to obtain the size distribution of the small component
reached from a randomly chosen type-i node. However, the
PGFs used there were functions of only one variable instead
of M (i.e., x instead of x) and therefore did not generate the

3In an infinite network, H; (x T) is invariant under translation on
the network, i.e., one always sees the same small-component size
distribution independent of where one stands in the small
component.
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composition of the small component (i.e., the number of
nodes of each type). Thus, (10) and (11) are generalized ver-
sions of previoulsy derived expressions.

D. Percolation threshold

Percolation is usually characterized by the divergence of
the correlation length. This translates here in the divergence
of the average size (s) of small components. Using the mo-
ments property [13] of PGFs, the average number of type-i
nodes in the small component reached from a randomly cho-
sen node is obtained by differentiating (12) with respect to x;,

M M
(sy=w; + > WIE Zz_,aﬁ}) (13)

=1 j=1

; oH;i(x;T)
where a}})z —’;|x , are the solutions of

af) =5, +2 B ). (14)

We have isolated in (14) the average number of type-n nodes
that can be reached from a type-j node arrived at by follow-
ing a [—j edge (average excess degree)

o 1 OF;(x;T)
B =7 — | (15)
Tjn axn x=1

which depends only on the network structure (i.e., its degree
distribution) and is therefore known. Thus, to obtain (s;), one
simply has to solve (14), M sets of M2 equations and M?
unknowns. It can be shown that all a,J are inversely propor-
tional to det (I-A) where I is the identity matrix and A is an
M X M block matrix whose blocks (A;;) are themselves M
X M matrices with

[Aij],u.v Uﬁ(}) 5 (16)

giving the (w,v) element of the (i, /) block. For example, in
the case M =2, A takes the form

{Tnﬁ(]? 0] [T12/3(121) O}

Ao 7,8y 0 T),85 0 (17)
lo Tzlﬂglz)} [0 Tzzﬂgzz)} .
0 T8y | [0 TBY

From (13), we see that the average size (s) of the component
reached from a randomly chosen node diverges as

M
1
<S>=§<Si>°< G- A) (18)

for det (I-A)—0. Therefore the phase transition happens
when det (I-A)=0, which marks the point where the giant
component first appears. This result is in accord with the
corresponding expression found in [25] and, as noted earlier,
is again more general.

E. Giant component

Beyond the percolation threshold, there is an extensive
cluster (the giant component) in the network. In Sec. III C,
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H,j(x;T) has been defined as generating the size distribution
of finite components. Thus, H;;(x;T), K;(x;T), and K(x;T)
are no longer normalized beyond the percolation threshold
since it is not guaranteed that a randomly chosen edge or
node will lead to a finite component (although a fraction of
them may lead to the giant component). Therefore, the prob-
ability that a randomly chosen type-i node leads to the giant
component is simply

Pi=1-K(1;T) = 1 - G(h;T) (19)
with G,»(IZ;T)EG,-(E, ,IZE;T). We have introduced the
notation h;=H,;;(1;T) (read h;; forward) as the probability
that a randomly chosen i—j edge leads to a finite compo-
nent, and is the solution of

hij= Fij(hj;T) (20)

obtained by evaluating (10) at x=1. If one randomly chooses
a node in the network, the probability that it leads to the
giant component is therefore

M M

P= E W,’Pi= 1- E WIGZ(}Z,T)

i=1 i=1

21

To calculate the size of the giant component, one needs to
know the probability that a randomly chosen node is not
linked to the giant component by any of its edges (i.e., that
this node cannot be reached from the giant component). One
simple way to obtain this information is to study the network
topology by following every edges backward. This can be
achieved with our formalism by simply using T7 (the trans-
pose of T) instead of T since any given type-i node can be
left (reached) by any of its edges with the probability T}

p—

(T};). We define h;; (read h;; backward) as the probability that
a given type-i node cannot be reached from the giant com-
ponent by a j—i edge. This quantity is calculated as the
solution of

hij = Fij(hi;TY)- (22)
Therefore, we see that G,-(IZ ;TT) is the probability that a
randomly chosen type-i node does not belong to the giant
component. The fraction of the network occupied by type-i
nodes that are in the giant component is thus given by

Si=wll = GihzTM] (23)
and the size of the giant component is
M M
§=28=1-2 wGh:T". (24)

i=1 i=1

In comparing (21) and (24), one will see that asymmetry of
the bond occupation probability matrix implies that P# S.
This quantitative difference between P and S resides in the
asymmetry in the number of occupied edges of type i —j and
of type j—i. A naive generalization of the formalism intro-
duced in [19] would have missed the distinction between P
and S. Clearly, for symmetric transmissibility T=T7, one
would have P=S. A similar result has previously been dis-
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cussed in [31] for semidirected networks and, with different
approaches, it has been obtained for undirected networks in
[36,51]. The present demonstration is an alternate extension
to the latter class of networks.

F. Average small-component size

Above the percolation threshold, K(x;T) still generates
the size distribution of the finite component reached from a
randomly chosen node, although it needs to be normalized
according to

K(x;T)
1-P
since P# 0. The general expression for (s;) is therefore
—~ M M
w;Gi(h;;T) 1 ~ (i)
s)= + w, 2, 7t 25
6= HTopR X el (29

where aEJ‘:) is the average number of type-i nodes in the finite

component reached by a randomly chosen [—j edge and is
the solution of

M
ol = Fj(h;;T) 8, + El T8 o). (26)
Analogously to (15),
o1 9F;(x;T)
ng): — = (27)

Tjn ‘?xn x:I;;

One can see that (25)—(27) reduce to (13)—(15) in absence of

the giant component since in this case P=0 and h;;=1. Tech-
nically, (25)—(27) can be very useful to obtain information on
the small components without having to solve (10)—(12), a
very time-consuming operation for large M or for networks
with large small components. It is also possible to calculate
the second moments of K(x;T),

1 a( aK(x;T))
S
1_7)(9.Xj ! dxi

<Sisj> = (28)

x=1

from which the covariance matrix of the small-component
size (cov{s;,s;}=(s;s;)—(s;)(s;)) is obtained. Clearly, iterative
equations for (s;s;), similar to (25) and (26), can be derived
to calculate the covariance matrix without solving (10)—(12).
Higher moments can also be obtained in a similar way.

G. Special cases

We now show that, in corresponding limit cases, our for-
malism reproduces the already published theoretical results.
First, one can easily verify that all of the equations in the
previous section reduce to the ones in [19] when M=1. Sec-
ond, equations associated with the components (small or gi-
ant) in [25] can be obtained by setting T;;=1Vi,j in our
equations and x=x in (10) and (11). Third, results obtained
from a semidirected formalism such as the one in [31] can
also be obtained with our formalism by setting 7;;=0 for
some ij pairs while keeping 7'; # 0. Fourth, for bipartite net-
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works (M=2), all edges are connecting different types of
nodes, and the constraint

Pi(kl,k2)=0 V kl¢0
must be imposed, implying that
=0, B=0. BP=0, af=0.

F;i(x;,x,;T) and H;(x,,x,; T) are then undefined. From (16),
we see that the phase transition in this case, det (I-A)=0,
occurs when

1) o2
TuTyBYAY =1,

a result previously obtained in [19,37]. Moreover, one can
obtain the average number of type-1 nodes in the component
reached from a randomly chosen type-1 node (s;), under the
percolation threshold by differentiating (11) with respect to
x; and solving (26)

T2 012128}
1 =TT BB

a result also obtained by the authors of [19,37]. Furthermore,
it is possible to calculate the size of the giant component as
in [37] by setting x,=1 in (10) and (11) with the constraints
listed above.

An even more general constraint P;(k)=0Vk;#0 can be
used to obtain a formalism for multipartite networks. Our
approach can therefore incorporate clustering effects by as-
signing some of the node types to groups and then using the
projected network (where nodes belonging to the same group
are linked together) as proposed in [23].

(sph=1+

IV. APPLICATION TO EPIDEMIOLOGY

Over the years, mathematical models [41,42] have pro-
vided insights into the factors influencing disease propaga-
tion dynamics and have improved testing, intervention, and
prevention strategies. Outbreaks of respiratory pathogens
(e.g., SARS [43]) and sexually transmitted infections (STIs)
have encouraged the emergence of models using network
theory to capture the patterns of potential disease-causing
interactions between individuals [19,20,31,44]. Despite the
many successes, most of these models are still based on a
simplifying assumption, which limits the realistic simulation
of disease propagation for certain categories of diseases. Be-
fore discussing how the quantities obtained from our formal-
ism can be translated in an epidemiological setting, we
briefly state some of the difficulties associated with a realis-
tic epidemic dynamics and the possible advantage of a mul-
titype description.

A. Failure of the i.i.d. hypothesis and heterogeneity

The i.i.d. hypothesis [19] assumes that the probability of
transmission between any pair of individuals is an indepen-
dent identically distributed random variable taken from a
given distribution. Thus, the a priori probability of transmis-
sion T between any two individuals is the mean of this dis-
tribution and, in the population as a whole, the disease will
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propagate from an infectious individual to a susceptible one
with the same probability 7. This implies that no correlations
whatsoever can be taken into account.

However, the probability of transmission of infectious dis-
eases is typically dependent on intrinsic immunological and
behavioral traits of individuals. Many infectious diseases
show heterogeneity in their transmissibility. For example, the
human immunodeficiency virus (HIV) has a higher effi-
ciency of transmission from male to female than from female
to male [45,46]. There is also strong evidence that coinfec-
tion with other STIs could facilitate HIV transmission
[47-49]. In regard to influenza, it has been shown that chil-
dren (under 15 years old) are more likely to transmit the
disease than adults [50]. Further, it has been shown that the
ii.d. hypothesis fails to adequately model susceptible-
infectious-recovered (SIR) dynamics when the distribution of
the infectious period P(7) is not sharp around a given value
7o [51,52]. Therefore, most existing percolation approaches
fail to realistically simulate the propagation of some infec-
tious diseases due to the inability of the i.i.d. hypothesis to
model the correlations between an individual’s traits (includ-
ing their infectious period) and the probability of transmis-
sion.

If one could identify specific individuals within the net-
work, one could determine who infects whom, and it would
become possible to apply the appropriate probability of
transmission. Hence, difficulties raised by the heterogeneity
in transmissibility could be largely overcome by considering
node heterogeneity. This suggests that, in order to properly
model the propagation of a large class of diseases, one could
separate the nodes into a sufficient number of categories
(types) to insure that the i.i.d. hypothesis can be applied cor-
rectly. Our multitype formalism can then be used to investi-
gate the percolation properties of the corresponding system.

Confronted with a situation where the infectious period is
broadly distributed and heterogeneity is present, one could
adopt the following line of action. In the case of influenza,
one could split the population between adults and children;
or between male and female when modeling HIV propaga-
tion. The probability of transmission could still vary accord-
ing to the i.i.d. hypothesis, within the same type of edges, if
nodes are separated into a sufficient number of groups,
within each of which all significant correlations are explicitly
included. The finite width of the infectious period distribu-
tion P(7) can be accounted for by simply dividing its contri-
bution into a sufficient number of duration subdomains
[7._,7;] (each associated with a node type randomly distrib-
uted in the population if more detailed information is not
available) and using the corresponding transmissibility in our
model. The fraction of the network occupied by type-i nodes
will then be w;=[ ;i 1P(T)dT. The same procedure is also ap-

plicable if the susceptibility of individuals is heterogeneous.

B. Epidemiological quantities

We now interpret the quantities that can be calculated
with our formalism in an epidemiological context. The con-
tact network topology is prescribed by P;(k) and w; while the
bond occupation probability matrix entrie 7}; are the average
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probability of transmission from infectious individuals of
type i to susceptible individuals of type j. K;(x;T) generates
the outbreak size distribution caused by patient zero (i.e., the
first known individual to become infected who directly or
indirectly causes all subsequent infections) of type i (e.g.,
adult, child; male, female). Similarly, K(x;T) generates the
outbreak size distribution caused by a patient zero of any
type. The quantity (s;) is the average number of type-i indi-
viduals infected from patient zero and <s)=2%1<si> is the
expected size of an outbreak. One could also differentiate
(11) with respect to x; to obtain the average number of type-j
individuals infected by a patient zero of type i (see Sec.
III G). Those quantities can be useful, for example, in evalu-
ating the impact of strategies focused on the reduction of
morbidity in specific population groups (e.g., health care
workers, the elderly).

For a given contact network, det(I-A) is a polynomial in
powers of the elements of T whose coefficients depend only
on the network topology. Thus, the percolation threshold,
det(I-A)=0, defines the critical transmissibility set over
which there is a nonzero probability that an outbreak will
turn into a large-scale epidemic. The probability that such an
epidemic will occur is given by P and by P; if patient zero is
known to be of type i. Should an epidemic occur, the fraction
of the population that will eventually be infected is given by
S, while S; indicates the fraction of the population of in-
fected individuals of type i. Note that if an outbreak dies out
while having infected only a finite number of individuals (or
a small number compared to the size of the population), the
expected number of infected individuals of type i is still
given by (s;) computed with (25) (this remark holds for (s) as
well).

C. Numerical simulations

To illustrate how our formalism could be applied in an
epidemiological context and to confirm its predictions, we
have performed extensive computer simulations on multitype
networks of N=103 nodes divided into two types (M =2). We
have considered a contact network where the distribution of
the total degree (k;+k,) of individuals is given by a power
law with an exponential cutoff and where the probability that
an edge leaving a type-i node arrives on a type-j node is
given by p;;. Thus, the joint degree distribution of our net-
work is

P (k) = +k2)"7fe‘("1+"2”“f(k1 + kz) bk

Lim(e—llkl-) k itPi3

with the parameters

[1} [8] {0.7 0.3]
=2 *Tlio] 7|04 06]

Li,(z) denotes the 7th polylogarithm of z [53] (also known
as Jonquiere’s function). We have used a simple joint degree
distribution to illustrate our point; nonetheless our formalism
is very general and P,(k) could include many nontrivial cor-
relations as shown in [25]. To show the effect of the asym-
metry of T on P and S, we have used the following trans-
missibility matrix:
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FIG. 3. (Color online) Size distribution of small components
obtained by numerical simulations (symbols) compared with the
theoretical prediction of (12) (lines). A and ¢ correspond to the
number of type-1 nodes in small components [generated by
K(x;,1;T)] for y=0.1 and 0.5, respectively. O and [ are the

equivalent quantities but for type-2 nodes [generated by
K(I,XZ,T)]

[0.95 0.98}
T=vy ,
048 1.00

where vy allows us to vary the infectiousness of the disease.
The specific choice of the elements of T has no particular
relevance here, except perhaps to result in large P and S
values for y=1. By solving det(I-A)=0 for y, we find that
the epidemic transition occurs when y,=0.1834.

We have generated 2000 multitype networks following a
method similar to the one described in [25], with the degree
distribution presented above. We have then performed epi-
demic simulations by infecting a randomly chosen node and
allowing the disease to propagate with probabilities given by
T. Above the percolation threshold, we have identified the
components (small or giant) by setting a size parameter, a
percentage of the total number of nodes, below which the
cluster was registered to belong to the set of small compo-
nents. Experimentation has shown the final results to be
rather insensitive to the exact value of the size parameter and
we have settled conservatively for a value of 0.5% of N.
Figure 3 compares the distribution of the number of infected
nodes of each type caused by an outbreak predicted by (12),
with the results of numerical simulations under (y=0.1) and
above (y=0.5) the epidemic threshold. One observes a very
good agreement between the theoretical prediction and the
simulations. This quantitative accord (in this figure and the
following ones) is representative of a much larger set of cal-
culations carried out with different values of the transmissi-
bility matrix elements. Figure 4 shows the average number
of infected nodes in an outbreak for each type of node and
for different values of . Theoretical predictions are obtained
from (25). Again, an excellent agreement between our model
predictions and numerical simulations is recorded; the small
disagreement around the percolation threshold is caused by
the finite size of the networks used for the simulations. In-
deed, as N decreases, finite-size effects become important
and the formalism would have to be modified along the lines
described in [52], for instance. Preliminary results indicate,
however, that agreement between results of the present for-
malism and numerical simulations is maintained, even if the
size of the network is reduced to N=1000. A more extensive
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Average size

FIG. 4. (Color online) Average number of nodes in small com-
ponents as predicted by (25) (lines) compared to simulation results
(symbols [, type-1 nodes; ¢ type-2 nodes; A, both) as a function
of . The vertical dashed black line indicates the percolation thresh-
old (v,).

study of the issue of finite size in a multitype network is
under investigation.

Finally, Fig. 5 compares the values predicted by our
model for the probability of an epidemic to occur (P) and its
relative size (S;, S,, and S) with simulation results for dif-
ferent values of 7. Again, there is a very good agreement
between the theoretical predictions and results from simula-
tions. The asymmetry of T is responsible for the significant
difference between P and S (up to approximately 10% in this
case). We also see that the presence of node types allows
more detailed information on the final state of an epidemic
since it is then possible to determine the number of individu-
als of each type that are infected during an epidemic. More-
over, Fig. 5 demonstrates that these numbers do not remain
proportional for varying transmissibilities. To the best of our
knowledge, such information was not possible to obtain in
previous percolation models. Furthermore, the heterogeneity
in transmissibility in our formalism allows one to test more
specific public-health policies. For instance, one could study
the effectiveness of age-specific influenza control strategies
such as vaccination, face masks, or hand washing by varying
the transmissibility matrix entries for the relevant age
groups. Therefore, the multitype approach of our model of-
fers more detailed information on outbreak outcomes. This is
very useful when comparing the cost effectiveness of preven-
tion or intervention strategies.

0.8

FIG. 5. (Color online) Probability of reaching the giant compo-
nent from a randomly chosen node (P, O), fraction of the network
occupied by type-1 nodes (S;, ), type-2 nodes (S,, <), and both
node types (S, A) in the giant component. Lines stand for theoret-
ical predictions and symbols for simulation results. The vertical
dashed black line indicates the percolation threshold (7,).
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V. CONCLUSION

In this paper, we have introduced a bond percolation for-
malism on multitype networks. The formalism explicitly al-
lows heterogeneity in the edge occupation probability via the
matrix T whose elements T;; are the probability for an i —j
edge to be occupied. Using probability generating functions,
we have obtained several exact forms of classical statistical
properties (in the limit of large networks) such as the size
distribution of small components, the probability of reaching
the giant component from any node, and its relative size.
Furthermore, the presence of node types has allowed us to
obtain more detailed information on the composition of
small components, the giant component, and a general ex-
pression for the percolation threshold. We have also obtained
iterative equations for the average number of type-i nodes in
the small component, which allows us to easily and rapidly
obtain information on the network structure.

We have also shown that our model is a generalized ver-
sion of various existing approaches based on the PGF. Many
known results and effects can be obtained with our model.
For instance, equations describing the bond percolation of
multipartite networks can easily be derived from our formal-
ism. While semidirected networks have been previously used
to simulate the asymmetry between population groups infect-
ing each other [31], this effect can be achieved with our
undirected network model by setting 7;;=0 for some ij pairs
while keeping T;#0. Thus, type-j nodes will be able to
infect type-i nodes, while transmission in the other direction
will not be possible. A completely general semidirected ex-
tension of our formalism (with 3M variables, say x, y, z, for
the three ways to move across the network, following the
links forward, backward, and in both directions) is straight-
forward to derive. This extended formalism would be re-
quired when the underlying network includes directed edges
whose presence cannot be randomly determined with a prob-
ability T, that solely depends on the edge type (here i— j),
i.e., additional correlations exist.

These structural properties have considerable influence on
the dynamical processes taking place on networks; this, in
turn, can have a significant impact on their topology. There-
fore, a formalism such as the one presented in this paper can
be used to probe and characterize the structure (by setting
T,-j:lVi,j:l,... ,M) of an evolving network at a given
time in order to predict the network’s topological evolution.

The approach described in this paper, when compared to
previous methods, facilitates more realistic simulations of
the propagation of infectious diseases manifesting heteroge-
neity in their transmissibility. We argue that heterogeneity in
nodes is a way to overcome some correlation issues caused
by heterogeneous transmissibility. In addition, the presence
of different types of nodes allows the simulation of many
nontrivial mixing patterns observed in real-world networks,
such as assortativity, the preferential connection between dif-
ferent types of nodes; and clustering, the fact that nodes be-
longing to a specific group are more likely to be connected to
one another in the contact network. Thus, the proposed
model is suitable for more detailed and more precise epide-
miological investigations (e.g., impact of intervention or pre-
vention strategies on specific population groups), resulting in
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more adapted and effective recommendations to public
health authorities. Hopefully, models such as the one pre-
sented in this paper joined with ever increasing theoretical
developments will contribute to the improvement of public
health policies.
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